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AN APPROXIMATE KINETIC TREATMENT OF SLOW- 
INITIATED LIVING POLYMERIZATION. II. FIRST-ORDER 
INITIATION AND HALF-ORDER PROPAGATION 

ELENA CEAUSESCU, R. BORDEIANU, ANCA ION,* E. BUZDUGAN, 
RODICA STANCU, IRINA CERCHEZ, and P. GHIOCA 

Chemical Research Institute ICECHIM 
Spl. Independentei 202,77208 Bucharest, Romania 

ABSTRACT 

An approximate analytical solution of the set of differential equations 
modeling the anionic polymerization of styrene is presented. By using 
this solution, a new method for calculating the initiation rate constant 
for this polymerization process was developed. 

INTRODUCTION 

In our previous paper [ 11 we presented a method for approximating the 
initiation rate constant for a slow-initiated living polymerization in which both 
initiation and propagation are first order with respect to all participants. Fol- 
lowing the same mathematical reasoning, we shall now treat the case of the 
anionic polymerization of styrene, initiated with n-butyllithium, in which the 
propagation is half order with respect to the active centers. 

THEORY 

It has been established [2,3] that, in styrene polymerization with n-butyl- 
lithium in aromatic hydrocarbons, the first stage of initiation is the formation 
of aggregates of reaction products between alkyllithium and monomer. It is 
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1556 CEAUSESCU ET AL. 

assumed that, upon reaching a critical size, the intermediate aggregates be- 
come available for initiation proper, i.e., for the formation of centers active 
in subsequent propagation. 

The kinetics of this polymerization process is desciibed by 

kP - polymer, CI,C*, . . . ,  c, - P* 
ki 2 ki, i I -' 

M M M 

where I represents the initiator, C1 to C, are secondary aggregates of increasing 
size and decreasing reactivity, P* represents active chains, and M represents 
monomer molecules. The corresponding set of differential equations is 

d[M] / d t  = -kp [P*] 1/2 [MI , 

with the initial conditions [I] I = [I] o ,  [C] I t=o  = 0, [P*] I = 0, 

The value of ki, can easily be determined experimentally by spectro- 
photometric measurements [2]. 

The inequality ki, >> ki,z holds, leading to a very rapid consumption of 
the initiator, whose concentration tends toward zero in a time interval [0, t') 
during which [MI and [P*] do not show any noticeable transformations [3]. 
We shall consider the set obtained from Set (1) after the consumption of the 
initiator by neglecting the time interval [0, t') and the monomer and active 
centers variation during this time interval, 

[MI I t=o  = [MI 0 -  

with the initial conditions [P*] I = 0, [MI 1 = [MI (we have used 
the obvious relation [I] + [C] + [P*] = [I] o ) .  

With the dimensionless variables m = [MI /[MI o ,  p = [P*] /[I] o ,  and 
T =  ki,2 [MI o t ,  we get to 
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APPROXIMATE KINETIC TREATMENT- II 1557 

which, by considering the dimensionless parameter e = kp [I] 0 ' / ~ / ( k j , 2  [MI 0 )  

and the substitution q(7) = -In m ( ~ ) ,  becomes 

We shall first consider the case E < 1 ,  and we shall apply the theory of 
regular perturbations [4] ~ It can be shown that the solutions of Set (4) 
(which are functions of both 7 and E )  accept partial derivatives of third order 
with respect to E, allowing us to look for second-order approximations of 
these solutions. Hence, we shall expand the functions p and q in a power 
series of E: 

and we shall use the expansions of exp ( - ~ ( T , E ) )  [ 11 and of p ( ~ , e ) ' / ~  in a 
power series of E :  

We obtain the set 
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1558 CEAUSESCU ET AL. 

By equating the corresponding E terms in the above set, we obtain a series 
of differential equations from whlch the functions qo, q l ,  . . . and p o ,  pl ,  
. . . will be calculated. The initial conditions for these equations are qn(0) = 
0 for n 2 0 and ~ ~ ( 0 )  = 0 for n 2 1. Since p o  has a negative exponent in the 
second equation of Set (5) ,  we shall use an initial condition for this function 
of the form lim p 0 ( 7 )  = 0. 

7’0 
The functions p n  and qn are (see the Appendix) 

The first-order approximation of the function ~ ( T , E )  is 

and the second-order approximation is 

By using Relations (8) and (10) and by substituting the expression of 
~ ( = k i , z [ M ] ~ t ) a n d  that ofE(=kp[I]o’12/(kj,2[M]o))in Eqs.(11) and 
(12), we obtain 41 and 411 as functions of the actual time t of the initial con- 
centrations and of the reaction rate constants. 

To compare the two approximations with the exact solution of Set (I), 
we have numerically integrated this set of differential equations with the 
constants ki, = 5.814 L-mol-’ Vmin-’, kj,z = 0.075 L-mol-’ amin-’, 
kp = 0.131 L1~2~mol-”2.mol-’/2.min-’, [MI = 0.6 mol-L-’, andvari- 
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APPROXIMATE KINETIC TREATMENT. I I  1559 

able [I] so as to obtain E = 0.1, E = 0.2, . . . , E = 0.7. Plots of the three func- 
tions are presented in Fig. 1 for three values of E. 

In a plot of the relative error vs conversion (Fig. 2), an increase of this 
error at very small conversions is observed, due to the approximation implied 
by going from Set (1) to Set (2). Since, at very small conversions, the func- 
tion q (= -In (1 - x), where x is the monomer conversion) is very small, 
though the relative error may seem large, the values of q and QII are very 
close to each other. 

As t tends to infinity, the functions qI and qiI approach asymptotes 

and 

where 

a = lim {r In[l  i. (1 - exp(-~) ) ' /~]  - (1 - exp ( -T>)"~  In [ I  

(15) 
7- 1 
+ (1 - exp (-S))'/~] ds} . 

It can be shown that a = 0.34. 

asymptotesy1 andyII have slopes equal to kp [I] 1/2 and the asymptote of 
q has the slope kp [I] 1/2f1/2, where f is the final value of p cf= lim p(r)). 

We observe that, as t", the functions 41 and 411 diverge from q, since the 

r"0 
The equation (similar to Litt's equation [ 51 ) that yields the value off can 

be obtained by dividing Eq. (3)2 by Eq. (3), and integrating: 

(1 - m ) / e = ~ n ( l  tp'I2)/(1 - p ' 1 2 ) - 2 p ' / 2 .  (16) 

As t-foo, m tends toward zero, hence 

from whichfmay be found. For small e's,f= 1 ,  but when E increases, f 
tends toward zero (see Table 1). It follows that the smaller E is, the better 
will be the agreement of q1 and 411 with q. 

two asymptotes y1 andyII on the abscissa: 
In order to approximate ki,2, we shall now consider the intercepts of the 
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t(min) 
l a  
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l b  I c  

FIG. 1. Plots of the function q (= -In (1 - x), where x is the monomer 
conversion) and of the two approximations for three values of E: q (-), 
41 (- - -), 411 (- - -). For E = 0.3, q and 411 are superimposed. 
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0 10 20 30 40 50 60 70 80 90 
2a 

Ez0.7 

O' 10 20 30 40 so 60 70 80 90 x 
2b 

FIG. 2. Relative error of the functions q and 411 (a), and q and 41 (b) 
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1562 CEAUSESCU ET AL. 

TABLE 1. Final Value off as a Function of e 

e f E f 
0.1 0.999 

0.2 0.996 

0.3 0.980 

0.4 0.954 

0.5 0.923 

0.6 0.89 1 

0.7 0.860 

0.8 0.830 

0.9 0.802 

1 0.776 

2 0.592 

10 0.252 

and 

t2  = 2(1 - In 2)/(ki,2 [MI o) + [2kp[I] 0112/(ki,2 [MI 0 ) ~ 1 ( 1  - ln2 2 -a) .  

(19) 
These simple equations lead to 

ki,2 = 2(1 - In 2)/(ti [MI 0 )  (20) 

= { 1 -1n2+ [(l -1n2)2 +2(1 - a - l n 2  2)kp[I]01~2t2]1~2}/(tz[M]o) 

By assuming that t l  and tz are very (2 1) 
By assuming that tl  and t2 are very close to the intercept to of the asymp- 

tote of the exact solution (i.e., tl = t2  = to),  we obtain the following ap- 
proximate equations for ki,2 : 

k;,z = 2(1 -In W ( t o  [MI 01, (22) 

k;,\={ 1 - l n 2 t  [ ( l - ln2) '  t 2 ( 1 - a - l n 2  2)kp[I]~1~2t~]'~2}/(to[M1). 

(23) 
These equations will give good approximations of kj for small values of E. 

However, it can be demonstrated by using another dimensionless time, ;= 
ki,2 [I] o f ,  and applying the theory of singular perturbations [4] that, even if 
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APPROXIMATE KINETIC TREATMENT. II 1563 

E > 1. the function qII is a good approximation for q in a certain time interval 
(the length of this time interval will decrease with increasing E ) .  If, in a cer- 
tain polymerization, E has a very large value and, as a result, large differences 
are observed between qlr (calculated with kp obtained from the final slope of 
a q vs time plot, and ki.2 obtained as above) and the experimental data, a 
second polymerization can be performed with [I] and [MI chosen so as to 
result in a small E (the kp  and ki,2 resulting from the previous polymerization 
will indicate the order of magnitude of the actual constants). 

Both constants, kp and ki,2, may also be found by computer fitting of the 
experimental data with the function 4 1 ~ .  A serious impediment for this fitting 
is the presence in the expression of 411 of an integral that cannot be calculated 
analytically. However, this difficulty may be by-passed by finding a function 
to approximate this integral. On using the integration by parts formula several 
times, it  can be shown that 

In [ I  + ( I  - e x p ( - ~ ) ) ' / ~ ] d s = r ~ n  [ I  + ( I  -exp(-7))1/21 1.' 
t 0.5 { In [ 1 t (1 - exp (-T))'/~] } ' t [ 1 - (1 - exp (-7))'12 

- 1.5 exp (-7)] In [ 1 - ( 1 - exp (-7))'/'] / [ 1 + (1 - exp (-T))'/~] ' 
- [7(1 - e x p ( - ~ ) ) + 2 ( 1  - e x p ( - ~ ) ) ' / ~ ] / {  4[1 + ( I  -exp(-~) ) ' /~] '} -Z ,  

(24) 
where (by puttingB(T)= (1 - exp ( - T ) ) ' / ~ )  

I(T) = r7) [ISS' - ~ - ( ~ - 1 ) ' l n ( l - s ) ] / ( 1 + s ) ~ d s .  (25) 
- 0  

The maximal value of integral Z, corresponding to 7-0, is less than 0.02 
(lim 1(7) = 0.0195). 
7- 

tion in Eq. (10) and then in Eq. (12), we obtain, with the time t and the 
notationA(t)= 1 - exp (-ki,z [MI o t ) :  

By neglecting the term Z in Eq. (24) and by substituting the resulted rela- 

q I I ( t )  = kp [I] o ' /2 t  + 2~ { In [ 1 f A(t)''2] - A(t)'l2 } t E' { 0.5 [ 1 - A(t)1/2] 

[ki ,2[Mj0t+21n(l  +A(t)"2)]2 +A(t)'f* In' (1 +A(t) ' f2)  

- [ ~ ( t ) ' / ~ ( 3 ~ ( t )  - M(t)  - 2 ~ ( t ) ' / ~  - 1) In (1 - ~ ( t ) ' / ~  

t 0.5A(t)(2 t A(t)'I2 t 4A(f))] /( 1 + A(t)"2)2 } I 
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Although this formula is quite complex, fitting the data with it is much 
faster than fitting with a solution obtained by numerical integration. More- 
over, for large values of e, the approximation of kp obtained by fitting the 
data with Eq. (26) is much more accurate than that obtained by the classical 
method of dividing the final slope of q by [I] 01/2 (since, as mentioned above, 
the actual final slope of q is not kp  [I] V2 but kp  [I] 1/2f1/2,  where f tends 
toward zero as e increases). 

APPLICATION TO EXPERIMENTAL DATA 

In order to see how the accuracy of the approximations of Eqs. (22) and 
(23) depends on e, we processed the data resulting from the integration of 
Set (1) (with constants ki,' = 5.814 L-mol-' Omin-', ki,2 = 0.075 L-mol-' * 

min-' , kp = 0.13 1 L'12 mol - ' I2 Smin -' , and E = 0.1, . . . ,0.7) by applying 
the three methods for calculating the intercept t o  [l] : 1) linear regression of 
the final points of the q(t)  curve, 2) fitting q(t)  with a hyperbolic branch, and 
3) fitting q(t)  with a rational function. The approximate values of kp calcu- 
lated from the final slope and of ki,2 calculated with Eqs. (22) and (23) are 
listed in Table 2. 

We also present the results obtained by processing the data gathered in 
three experiments of anionic polymerization of styrene with n-BuLi, per- 
formed at 8S0C (Exp. l), 10°C (Exp. 2), and 25OC (Exp 3). For each set 
of experimental data, the slope and intercept of the asymptote were deter- 
mined. by using the three methods described in Ref. 1; kp  was calculated from 
the slope and ki,2 with Eqs. (22) and (23). The resulting constants are: 

For Exp. 1 : kp = 0.1 15 L *rnol-'I2 emin-', kj, 2 = 0.03 1 L-mol-' omin-', 
For Exp. 2: kp = 0.123 L'~2*mol- '~2*min- ' ,  ki,2 = 0.036 L-mol-'*min-', 
For Exp. 3: kp  = 0.647 L1/2*mo1-1/2*min-', ki,2 = 0.16 L-mol-'*min-'. 

The above values are those that lead to the smallest standard deviation (of 
411 from q )  from the three sets of constants calculated for each experiment 
(Fig. 3). 

The method of computer fitting the experimental data with Eq. (26) was 
also tested. We again used the data obtained in the numerical integration of 
Set (1) with the rate constants ki,1 = 5.814 L-mol-'*min-', ki,2 = 0.075 
L-mol-' Smin-', and kp  = 0.131 L1/2-mol-'12*min-', and we used the fol- 
lowing starting values for the fitting: ki,2 = 0.15 L-mol-' amin-' and k = 

k, = 0.126 L'~2.mol-'/2*min-1. 
0.2 ~'/'2*m01-1/2 emin-1 . The results were ki,2 = 0.085 Lemol-' -min- P and 
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0 

- 
60 120 180 240 t h i n )  

FIG. 3 .  Plot of the function 911 (-) obtained by processing the data 
from three anionic polymerizations of styrene: (a) Exp. 1,  (b) Exp. 2, 
(c) Exp. 3. The open circles represent points. 
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1568 CEAUSESCU ET AL. 

CONC LUSl ONS 

For the usual conditions of polymerization (small E’s), the obtained approxi- 
mate analytical solutions of Set (1) are in good agreement with a solution cal- 
culated by numerical integration (the second-order approximation being, how- 
ever, more accurate than the first-order approximation). 

Hence, the approximate formulas for ki,2 based upon these solutions yield 
values of this rate constant which are very close to the true one. 

For unusual large E’S, when Eqs. (22) and (23) do not provide very good ap- 
proximations of ki , z ,  two procedures may be followed: on consists of select- 
ing [I] and [MI so as to obtain a small E and performing another polymer- 
ization with these new initial concentrations, while the other one consists in 
fitting the experimental 4 data with the approximate Eq. (26). 

APPENDIX 

Set ( 5 )  is written in the form 

By identifying the eo terms in the two equations, it follows that 

po(7 )  = 1 - exp (-T). 

Then, by equating the e terms in Eq. (A.l)?, we obtain dq, ( T ) / ~ T  = 
P ~ ( T ) ’ / ~ ,  i.e., 

After integration 
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APPROXIMATE KINETIC TREATMENT. IS 1569 

The E terms in Eq. (A.I)l lead to 

from which it follows that 

The e2 terms of Eq. (A. l)? are now equated to obtain 

&2(7)/d7 = (1/2)P0(7)-~’~P1(7), 

and after the substitutions, 

By observing that 

we may write 

and after performing the calculations, the expression for qz given by Eq. (10) 
is obtained. 
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